#Inverseincentivesplan
import numpy as np
import pandas as pd
# Step 1: Define States and Initial Budgets
states = ['StateA', 'StateB', 'StateC']
current_reimbursements = np.array([1000, 1500, 2000]) # in millions
base_budgets = np.array([800, 1200, 1600]) # in millions
profit_percentage = 0.50
population_growth = np.array([0.02, 0.03, 0.01]) # 2%, 3%, 1%
penalty_rate = 0.10 # 10% penalty
bonus_percentage = 0.05 # 5% bonus
# Step 2: Define Current Expenses
current_expenses = np.array([900, 1400, 1800]) # in millions
# Step 3: Run Simulation
def simulate_savings(expenses, base_budget, profit_percentage, pop_growth, penalty_rate, bonus_percentage):
potential_savings = expenses - base_budget
profit = potential_savings * profit_percentage
new_budget = base_budget + profit
# Penalty if budget increases more than population growth
budget_increase = new_budget - base_budget
penalty = 0
if budget_increase > base_budget * pop_growth:
penalty = (budget_increase - base_budget * pop_growth) * penalty_rate
# Apply savings to cover penalty
if potential_savings > 0:
penalty = max(0, penalty - potential_savings)
# Bonus for reducing budget needs
bonus = (base_budget - new_budget) * bonus_percentage if new_budget < base_budget else 0
# Adjust final budget with penalty and bonus
adjusted_budget = new_budget + penalty - bonus
taxpayer_savings = np.sum(current_reimbursements) - np.sum(adjusted_budget)
return adjusted_budget, profit, taxpayer_savings, penalty, bonus
# Step 4: Run Scenarios
scenarios = []
for i in range(len(states)):
expenses = current_expenses[i]
base_budget = base_budgets[i]
pop_growth = population_growth[i]
adjusted_budget, profit, taxpayer_savings, penalty, bonus = simulate_savings(
expenses, base_budget, profit_percentage, pop_growth, penalty_rate, bonus_percentage
)
scenarios.append({
'State': states[i],
'Adjusted Budget': adjusted_budget,
'Profit': profit,
'Taxpayer Savings': taxpayer_savings,
'Penalty': penalty,
'Bonus': bonus
})
results_df = pd.DataFrame(scenarios)
# Step 5: Print Results
print("Simulation Results:")
print(results_df)
# Step 6: Economic Impact Analysis
# This is a simplified placeholder for economic impact analysis.
employment_reduction = np.random.uniform(-0.05, 0.05, len(states)) # 5% reduction to 5% increase
economic_impact = results_df['Taxpayer Savings'] * (1 + employment_reduction)
results_df['Economic Impact'] = economic_impact
print("\nEconomic Impact Analysis:")
print(results_df[['State', 'Taxpayer Savings', 'Economic Impact']])
Comments
Post a Comment